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1. Introduction

Often in mathematics we encounter structures that admits a multiplication i.e. a binary

operation. Given a space with a multiplication, the basic questions we can ask for are whether

it is unital, is it associative, is it commutative? The class of spaces that have all of these desired

properties are commutative topological monoids. In the top of that, if the points in the space

admits inverses as well, then we have the notion of commutative topological groups. But there are

spaces which are very close to being a topological group, but not exactly. One such space is the loop

space Ω𝑋 associated to a topological space 𝑋 which is the central object of this talk. In algebraic

topology one of the main ways to probe a space is by looking at its loop space. Loop spaces are

important objects in algebraic topology for a variety of reasons, including their connections to

higher homotopy groups, spectra, and generalized cohomology theories.

2. Loop spaces

Let 𝑋 = (𝑋, ∗) be a compactly generated weakly Hausdorff based topological space, and

Ω𝑋 := Top∗ ((S1, 1), (𝑋, ∗)) be the (1-fold) loop space of 𝑋 at ∗ with the compact open

topology. From a first course in algebraic topology, one learns that there is a multiplication

operation on Ω𝑋 viz.

𝜇 : Ω𝑋 ×Ω𝑋 → Ω𝑋

defined as,

𝜇(𝛼, 𝛽) =
{
𝛼(2𝑠), 0 ≤ 𝑠 ≤ 1

2

𝛽(2𝑠 − 1), 1
2 ≤ 𝑠 ≤ 1

concatenating the loops 𝛼 followed by 𝛽 1
. There is this standard observation that

Observation 2.0.1. The multiplication 𝜇 is not associative on the nose, on Ω𝑋 .

Reason 2.0.2. (𝛼 · 𝛽) · 𝛾 ≠ 𝛼 · (𝛽 · 𝛾) even as set maps. In other words, 𝜇(𝜇(−,−),−) and

𝜇(−, 𝜇(−,−)) are different ternary operations on Ω𝑋 .

Conclusion 2.0.3. In fancy terms, with the chosen binary operation on Ω𝑋 , the space of ternary

operations on Ω𝑋 fails to be a singleton space.

Having that, next one must be curious about is whether (𝛼 · 𝛽) · 𝛾 ≃ 𝛼 · (𝛽 · 𝛾).

Proposition 2.0.4. For 𝛼, 𝛽, 𝛾 ∈ Ω𝑋 , (𝛼 · 𝛽) · 𝛾 ≃ 𝛼 · (𝛽 · 𝛾) i.e. there exists a map K(3)2 ×
(Ω𝑋)3 → Ω𝑋 satisfying the boundary conditions, where K(3) is a space that looks like

Date: March 2025.

1
Henceforth, we shall write 𝛼 · 𝛽 for 𝜇 (𝛼, 𝛽) .
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Figure 1. K(3)

Proof.

𝐻 (𝑡, 𝑠) =

𝛼((2𝑠)𝑡 + (4𝑠) (1 − 𝑡)), 0 ≤ 𝑠 ≤ ( 𝑡2 + 1−𝑡

4 )
𝛽(4𝑠 − 2), ( 𝑡2 + 1−𝑡

4 ) ≤ 𝑠 ≤ ( 3𝑡4 + 1−𝑡
2 )

𝛾((4𝑠 − 3)𝑡 + (2𝑠 − 1) (1 − 𝑡)), ( 3𝑡4 + 1−𝑡
2 ) ≤ 𝑠 ≤ 1

□

We say 𝜇 is homotopy associative i.e. associative upto coherent homotopy.

Proposition 2.0.5. 𝜇 is homotopy unital i.e. there exists homotopies 𝜇(∗ × 1) ≃ 1 ≃ 𝜇(1 × ∗).

Corollary 2.0.6. Ω𝑋 is a homotopy associative 𝐻-space.

One thing we notice here is that with a choice of multipliation 𝜇 on Ω𝑋 i.e. a map K(2) ×
(Ω𝑋)2 → Ω𝑋 , where K(2) is a space that looks like

Figure 2. K(2)

the two point space {𝜇(1× 𝜇), 𝜇(𝜇×1)} is contractible inside the space of ternary operations

on Ω𝑋 i.e. there is a path between 𝜇(1 × 𝜇) and 𝜇(𝜇 × 1) in E𝑛𝑑𝑋 (3)3
. Moving forward, there

are essentially five ways to multiply four loops 𝛼, 𝛽, 𝛾, 𝛿 in order, viz.

((𝛼𝛽)𝛾)𝛿 (𝛼(𝛽𝛾))𝛿 (𝛼𝛽) (𝛾𝛿) 𝛼(𝛽(𝛾𝛿)) 𝛼((𝛽𝛾)𝛿)
with not only just homotopies between any pair from the list, but also higher homotopies.

Proposition 2.0.7. Any pair from the above list are not equal on the nose, rather are homotopic.

Proposition 2.0.8. The following pentagon

((𝛼𝛽)𝛾)𝛿

(𝛼𝛽) (𝛾𝛿) (𝛼(𝛽𝛾))𝛿

𝛼(𝛽(𝛾𝛿)) 𝛼((𝛽𝛾)𝛿)
is not commutative.

Proposition 2.0.9. There exists a 2-homotopy i.e. a map K(4) × (Ω𝑋)×4 → Ω𝑋 which fills in
the above pentagon, where K(4) is a space which looks like

Moving on, it is very tempting to claim thatK(5) is a space that looks like a regular polyhedron

with 14-vertices, with pentagonal faces, i.e. 8 faces and 20 edges

Exercise 2.0.10. Though it satisfies Euler’s formula 𝑉 − 𝐸 + 𝐹 = 2, such regular polyhedron

doesn’t exist.

3
We will introduce the notation in the next section.
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Figure 3. K(4)

Reason 2.0.11. Observe that we have the following non-commutative square

((𝛼1 · 𝛼2) · 𝛼3) (𝛼4 · 𝛼5) (𝛼1 · (𝛼2 · 𝛼3)) (𝛼4 · 𝛼5)

(((𝛼1 · 𝛼2) · 𝛼3) · 𝛼4) · 𝛼5 ((𝛼1 · (𝛼2 · 𝛼3)) · 𝛼4) · 𝛼5

that is filled by a 2-homotopy which looks like

Figure 4. This is not K(4)

and it is clearly not K(4). Rather K(5) is a space that looks like

Figure 5. K(5)

This shows the complex combinatorics of K(𝑛) is general.

But what do we take away from these low dimensional cases? We observe in this section that

these spaces K(𝑛) are sort of the abstraction of a family of composable loops in 𝑋 , useful for the

“bookkeeping” and applications of such families. This motivates us to learn what an operad is!
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3. Non-symmetric operad

A non-symmetric topological operad O is a collection {O(𝑛)}∞
𝑛=0 of spaces, with O(0) a

singleton space, together with the following data:

(i) Continuous maps (abusing notation),

𝛾 : O(𝑘) × O( 𝑗1) × O( 𝑗2) × · · · × O( 𝑗𝑘) → O( 𝑗1 + 𝑗2 + · · · + 𝑗𝑘)
such that if there are continuous maps

𝛾 : O( 𝑗1) × O(𝑖11) × O(𝑖12) × · · · × O(𝑖1𝑗1 ) → O(𝑖11 + · · · + 𝑖1𝑗1 )
𝛾 : O( 𝑗2) × O(𝑖21) × O(𝑖22) × · · · × O(𝑖2𝑗2 ) → O(𝑖21 + · · · + 𝑖2𝑗2 )

...

𝛾 : O( 𝑗𝑘) × O(𝑖𝑘1) × O(𝑖𝑘2) × · · · × O(𝑖𝑘𝑗𝑘 ) → O(𝑖𝑘1 + · · · + 𝑖𝑘𝑗𝑘 )

we have

𝛾(𝛾( 𝑓 ; 𝑔1, · · · , 𝑔𝑘); ℎ11, · · · , ℎ𝑘𝑗𝑘 ) = 𝛾( 𝑓 ; 𝑒1, · · · , 𝑒𝑘)
where

𝑒𝑠 = 𝛾(𝑔𝑠; ℎ𝑠1, · · · , ℎ𝑠𝑗𝑠 )

(ii) An identity element 1 ∈ O(1) such that

𝛾(1; 𝑑) = 𝑑

for all 𝑑 ∈ O( 𝑗) and

𝛾(𝑐; 1, 1, · · · , 1︸      ︷︷      ︸
𝑘 many

) = 𝑐

for all 𝑐 ∈ O(𝑘).

Example 3.0.1. Let 𝑋 be a compactly generated Hausdorff topological space. We define the

non-symmetric endomorphism operad E𝑛𝑑𝑋 as follows. Let E𝑛𝑑𝑋 (𝑛) denote the space of based

continuous maps 𝜇 : 𝑋×𝑛 → 𝑋 , with 𝑋×0 = ∗, andE𝑛𝑑𝑋 (0) is the singleton space {𝑖 : ∗ → 𝑋}.

The data is defined by
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(i) 𝛾( 𝑓 ; 𝑔1, 𝑔2, · · · , 𝑔𝑘) = 𝑓 (𝑔1 × 𝑔2 × · · · × 𝑔𝑘) for 𝑓 ∈ E𝑛𝑑𝑋 (𝑘) and 𝑔𝑘 ∈ E𝑛𝑑𝑋 ( 𝑗𝑘).

(ii) The identity element 1 ∈ E𝑛𝑑𝑋 (1) is the identity map id𝑋 : 𝑋 → 𝑋 .

Example 3.0.2. We define the non-symmetric associative operad A𝑠𝑠 as follows. Let A𝑠𝑠(𝑛)
denote the singleton space {∗} for all 𝑛 ≥ 0. The data is defined by

(i) 𝛾(∗; ∗, ∗, · · · , ∗) = ∗.

(ii) The identity element 1 ∈ A𝑠𝑠(1) is ∗.

Just as group theory without representations is rather sterile, so operads are best appreciated

by their representations, known as algebras, especially algebras with higher homotopies.

Definition 3.0.3. An action of an operad on a space 𝑋 is a collection of maps 𝜓𝑘 : O(𝑘) →
E𝑛𝑑𝑋 (𝑘) such that

(i) 𝜓1 (1) = id𝑋 : 𝑋 → 𝑋 .

(ii) The following square

O(𝑘) × O( 𝑗1) × O( 𝑗2) × · · · × O( 𝑗𝑘) O( 𝑗1 + 𝑗2 + · · · + 𝑗𝑘)

E𝑛𝑑𝑋 (𝑘) × E𝑛𝑑𝑋 ( 𝑗1) × E𝑛𝑑𝑋 ( 𝑗2) × · · · × E𝑛𝑑𝑋 ( 𝑗𝑘) E𝑛𝑑𝑋 ( 𝑗1 + 𝑗2 + · · · + 𝑗𝑘)

𝛾

𝜓𝑘×𝜓𝑗𝑖
×···×𝜓𝑗𝑘

𝜓𝑗1+ 𝑗2+···+ 𝑗𝑘

𝛾

commutes.

Definition 3.0.4. A based space 𝑋 is an O-algebra if O acts on 𝑋 .

Example 3.0.5. We shall characterize the non-symmetric A𝑠𝑠-algebras. An action of A𝑠𝑠 on a

space 𝑋 picks out a 𝑛-ary operation for each 𝑛. Suppose 𝜓2 (∗) = 𝜇 : 𝑋×2 → 𝑋 , then consider

the commutative square

A𝑠𝑠(2) × A𝑠𝑠(1) × A𝑠𝑠(2) A𝑠𝑠(3)

E𝑛𝑑𝑋 (2) × E𝑛𝑑𝑋 (1) × E𝑛𝑑𝑋 (2) E𝑛𝑑𝑋 (3)

𝛾

𝜓2×𝜓1×𝜓2 𝜓3

𝛾′

which forces 𝜓3 (∗) = 𝜇(1 × 𝜇). Similarly, the commutativity of the square

A𝑠𝑠(2) × A𝑠𝑠(2) × A𝑠𝑠(1) A𝑠𝑠(3)

E𝑛𝑑𝑋 (2) × E𝑛𝑑𝑋 (2) × E𝑛𝑑𝑋 (1) E𝑛𝑑𝑋 (3)

𝛾

𝜓2×𝜓2×𝜓1 𝜓3

𝛾′
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forces 𝜓3 (∗) = 𝜇(𝜇 × 1). Thus, 𝜇 is associative on the nose. Next, consider the commutative

sqaure

A𝑠𝑠(2) × A𝑠𝑠(0) × A𝑠𝑠(1) A𝑠𝑠(1)

E𝑛𝑑𝑋 (2) × E𝑛𝑑𝑋 (0) × E𝑛𝑑𝑋 (1) E𝑛𝑑𝑋 (1)

𝛾

𝜓2×𝜓0×𝜓1 𝜓1

𝛾′

which implies 1 = 𝜇(∗ × 1). Similarly, the commutativity of the square

A𝑠𝑠(2) × A𝑠𝑠(1) × A𝑠𝑠(0) A𝑠𝑠(1)

E𝑛𝑑𝑋 (2) × E𝑛𝑑𝑋 (1) × E𝑛𝑑𝑋 (0) E𝑛𝑑𝑋 (1)

𝛾

𝜓2×𝜓1×𝜓0 𝜓1

𝛾′

implies 1 = 𝜇(1 × ∗). Thus, 𝜇 is unital. Therefore, 𝑋 is an A𝑠𝑠-algebra iff 𝑋 has an unital and

associative multiplication.

Observation 3.0.6. Ω𝑋 is not an A𝑠𝑠-algebra.

Then the natural question here is that, can Ω𝑋 be realized as an algebra of some operad O? It

seems that we have a guess of one such candidate.

Example 3.0.7. The spaces K(𝑛) for 𝑛 ≥ 0 discussed in section 2, collectively forms an operad

known as the Stasheff associahedron operad K .

Fact 3.0.8. K(𝑛) is a space which for all 𝑛 ≥ 2 looks like

(i) K(𝑛) is homeomrphic to I𝑛−2.

(ii) K(𝑛) is a regular polyhedron with

𝑛(𝑛 − 1)
2

− 1 faces and 𝐶𝑛−1 =
1

𝑛

(2(𝑛−1)
𝑛−1

)
vertices.

Proposition 3.0.9. The loop space Ω𝑋 is a K-space.

4. 𝐴∞-operad

One important thing to notice is thatK(𝑛) is contractible for all𝑛, and thus our next definition.

Definition 4.0.1. A non-symmetric operad O is an 𝐴∞-operad if O(𝑛) is contractible for all

𝑛 ≥ 0.

Definition 4.0.2. A 𝐴∞-space is a space together with an action of an 𝐴∞-operad.

Example 4.0.3. The Stasheff operad K is an 𝐴∞-operad since K(𝑛) is homeomorphic to I𝑛−2

for all 𝑛 ≥ 2. Thus, a K-space is an 𝐴∞-space. It turns out that the converse is true as well.

Proposition 4.0.4. An 𝐴∞-space is a K-space.

Corollary 4.0.5. The loop space Ω𝑋 is an 𝐴∞-space.

Another thing to notice about Ω𝑋 is that by definition 𝜋0 (Ω𝑋) =: 𝜋1𝑋 , which is a group.

Thats motivates our next definition of a group-like space.

Definition 4.0.6. A space 𝑋 is a group-like space if 𝜋0𝑋 is a group.
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Now the question arises what are group-like 𝐴∞-spaces, other than the loop space Ω𝑋 , but

the Recognition principle4
due to May tells us that they are the only ones. In fancy terms, any

group-like space is weakly deloopable.

Theorem 4.0.7. Every group-like 𝐴∞-space is weak homotopy equivalent to Ω𝑋 for some space 𝑋 .

5. Homotopy commutativity

We again recall the standard multiplication of two loops 𝛼, 𝛽 ∈ Ω𝑋 ,

𝛼 · 𝛽 =

{
𝛼(2𝑠), 0 ≤ 𝑠 ≤ 1

2

𝛽(2𝑠 − 1), 1
2 ≤ 𝑠 ≤ 1

Observation 5.0.1. The multiplication is neither commutative nor homotopy commutative, on

Ω𝑋 . This means that neither 𝜇(−,−) and 𝜇(𝜏(−,−)) are equal nor are they path-connected

in E𝑛𝑑𝑋 (2). This amounts to say that we have a map KΣ (2) → E𝑛𝑑𝑋 (2), where KΣ (2) is a

doubleton space. Apriori, it is not clear why this map picks up 𝜇(−,−) and 𝜇(𝜏(−,−)).

Definition 5.0.2. A symmetric topological operad O is a collection {O(𝑛)}∞
𝑛=0 of spaces, with

O(0) a singleton space, together with the following data:

(i) The data of a non-symmetric operad.

(ii) A right free action of 𝑆𝑘 on O(𝑘) such that the following diagram

O(𝑘) × O( 𝑗1) × · · · × O( 𝑗𝑘) O(𝑛) × O( 𝑗𝜎−1 (1) ) × · · · × O( 𝑗𝜎−1 (𝑘 ) )

O(𝑘) × O( 𝑗1) × · · · × O( 𝑗𝑘) O( 𝑗1 + · · · + 𝑗𝑘)

O( 𝑗1 + · · · + 𝑗𝑘)

1×𝜌

𝜎×1 𝛾

𝛾 𝜎 𝑗1 , · · · , 𝑗𝑘

commutes.

Example 5.0.3. The symmetric endomorphism operad E𝑛𝑑Σ
𝑋

where the data is same as the

non-symmetric version along with the 𝑆𝑘 action on E𝑛𝑑Σ
𝑋
(𝑘) given by ( 𝑓 𝜎) (𝑥1, · · · , 𝑥𝑘) =

𝑓 (𝑥𝜎−1 (1) , · · · , 𝑥𝜎−1 (𝑘 ) ) for 𝑓 ∈ E𝑛𝑑Σ
𝑋
(𝑘), 𝜎 ∈ 𝑆𝑘 .

Definition 5.0.4. An action of an operad on a space 𝑋 is a collection of 𝑆𝑘 -equivariant maps

𝜓𝑘 : O(𝑘) → E𝑛𝑑𝑋 (𝑘) such that

(i) 𝜓1 (1) = id𝑋 : 𝑋 → 𝑋 .

(ii) The following square

O(𝑘) × O( 𝑗1) × O( 𝑗2) × · · · × O( 𝑗𝑘) O( 𝑗1 + 𝑗2 + · · · + 𝑗𝑘)

E𝑛𝑑𝑋 (𝑘) × E𝑛𝑑𝑋 ( 𝑗1) × E𝑛𝑑𝑋 ( 𝑗2) × · · · × E𝑛𝑑𝑋 ( 𝑗𝑘) E𝑛𝑑𝑋 ( 𝑗1 + 𝑗2 + · · · + 𝑗𝑘)

𝛾

𝜓𝑘×𝜓𝑗𝑖
×···×𝜓𝑗𝑘

𝜓𝑗1+ 𝑗2+···+ 𝑗𝑘

𝛾

commutes.

4
This is the base case of the Recognition principle
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Example 5.0.5. We define the commutative operad C𝑜𝑚𝑚 similar to the associative operad A𝑠𝑠

as follows. Let C𝑜𝑚𝑚(𝑛) denote the singleton space {∗} for all 𝑛 ≥ 0. The data of the operad is

same as that of A𝑠𝑠, together with the trivial action of 𝑆𝑘 on C𝑜𝑚𝑚(𝑘). The equivariance and

the structure maps characterizes the C𝑜𝑚𝑚-algebras, which are precisely spaces 𝑋 having unital,

associative and commutative multiplication.

6. Little 𝑛-cubes operad

We will deal with 𝑛 = 1 case for this talk. The goal of this section is to understand how little

cube operad 𝐸1 acts on spaces.

Definition 6.0.1. The little cube operad 𝐸1 is defined as follows. A point in 𝐸1 (𝑘) is a map

𝑓 : I ⨿ I ⨿ · · · ⨿ I︸            ︷︷            ︸
𝑘 many

→ I

that specifies 𝑘 disjoint little cubes in I i.e. 𝑓 can be thought of as a 𝑘-tuple ( 𝑓1, 𝑓2, · · · , 𝑓𝑘) of

mutually disjoint little cubes inside I, 𝑓𝑘 : I → I being a nice map.

Proposition 6.0.2. 𝐸1 is a weak symmetric 𝐴∞-operad i.e. an 𝐸1-operad is weakly equivalent to
an 𝐴∞-operad.

Corollary 6.0.3. An 𝐸1-space is weak homotopy equivalent to an 𝐴∞-space.

Next, we show that 𝐸1 acts on Ω𝑋 .

Proposition 6.0.4. Ω𝑋 is an 𝐸1-space.

Proof. The loop space Ω𝑋 can be viewed as the space of maps (I, 𝜕I) → (𝑋, ∗) in the category

of pairs of spaces. For a 𝑘-tuple ( 𝑓1, 𝑓2, · · · , 𝑓𝑘) of mutually disjoint little cubes and 𝑘-many

loops (𝛼1, 𝛼2, · · · , 𝛼𝑘) ∈ (Ω𝑋)𝑘 , 𝛼𝑘 : (I, 𝜕I) → (𝑋, ∗). Then we obtain another loop

𝛽 : 𝑠 ↦→
{
𝛼𝑘 ( 𝑓 −1𝑘

(𝑠)) 𝑠 ∈ 𝑓𝑖 (I)
∗ otherwise

This is the ordinary concatenation of loops in order, in disguise. The figure below makes it clear.

□

Theorem 6.0.5. Every group-like 𝐸1-space is weak homotopy equivalent to Ω𝑋 for some space 𝑋 .

This can be generalized to 𝑛-fold loop spaces Ω𝑛𝑋 .

Theorem 6.0.6. Every group-like 𝐸𝑛-space is weak homotopy equivalent to Ω𝑛𝑋 for some space 𝑋 .
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