A-OPERADS AND MAY’S RECOGNITION PRINCIPLE

ARGHAN DUTTA

These are the notes for a talk I gave at the Graduate Student Seminar in April, 2025 at the
University of Massachusetts Amherst.

1. INTRODUCTION

Often in mathematics we encounter structures that admits a multiplication i.e. a binary
operation. Given a space with a multiplication, the basic questions we can ask for are whether
it is unital, is it associative, is it commutative? The class of spaces that have all of these desired
properties are commutative topological monoids. In the top of that, if the points in the space
admits inverses as well, then we have the notion of commutative topological groups. But there are
spaces which are very close to being a topological group, but not exactly. One such space is the loop
space QX associated to a topological space X which is the central object of this talk. In algebraic
topology one of the main ways to probe a space is by looking at its loop space. Loop spaces are
important objects in algebraic topology for a variety of reasons, including their connections to
higher homotopy groups, spectra, and generalized cohomology theories.

2. LooPr SPACES

Let X = (X, *) be a compactly generated weakly Hausdorft based topological space, and
QX := Top,((S', 1), (X,*)) be the (1-fold) loop space of X at * with the compact open
topology. From a first course in algebraic topology, one learns that there is a multiplication
operation on QX viz.

U QX X QX — QX
defined as,
a(2s), 0
B(2s-1), 3

concatenating the loops & followed by 8. There is this standard observation that

—_ N

(@, ) <s<
a =

R <s<
Observation 2.0.1. The multiplication u is not associative on the nose, on QX.

Reason 2.02. (a-B) -y # a - (B -y) even as set maps. In other words, p(u(—, —), —) and
(=, u(—=, —)) are different ternary operations on QX.

Conclusion 2.0.3. In fancy terms, with the chosen binary operation on QX, the space of ternary
operations on QX fails to be a singleton space.

Having that, next one must be curious about is whether (a - 8) -y = @ - (8 - ).

Proposition 2.0.4. Fora,B,y € QX, (a-B) -y =a - (B ) ic. there exists a map K(3)* X
(QX)3 - QX satisfying the boundary conditions, where K(3) is a space that looks like

Date: March 2025.
"Henceforth, we shall write @ - B for u(a, B).
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L ]

Ficure1 K(3)

Proof.
a((2s)1+ (45)(1 - 1)), 0<s<(5+4h)
H(t,5) =y B(4s - 2), (t+) <s< (3415
y((ds=3)t+(2s-1(1-1), (EL+)<s<1

We say u is homotopy associative i.e. associative upto coherent homotopy.
Proposition 2.0.5. u is homotopy unital i.e. there exists homotopies u(* X 1) = 1 = (1 X *).
Corollary 2.0.6. QX s a homotopy associative H-space.

One thing we notice here is that with a choice of multipliation y on QX i.e. a map K(2) x
(QX)? — QX, where K(2) is a space that looks like

Figure 2. K(2)

the two point space { (1 X ), pt(u X 1)} is contractible inside the space of ternary operations
on X i.e. there is a path between (1 X p) and p(u X 1) in Endx (3)*. Moving forward, there
are essentially five ways to multiply four loops @, 8, v, ¢ in order, viz.

((@B)y)o  (a(By))o (ap)(yd) a(B(ys)) a((By)o)
with not only just homotopies between any pair from the list, but also higher homotopies.
Proposition 2.0.7. Any pair from the above list are not equal on the nose, rather are homotopic.

Proposition 2.0.8. The following pentagon

((aB)y)o
(ap)(yd) (a(By))d
a(B(yd)) < a((By)9)

s not commutative.

Proposition 2.0.9. There exists a 2-homotopy i.e. a map K(4) x (QX V4 — QX which  fills in
the above pentagon, where K(4) is a space which looks like

Moving on, it is very tempting to claim that K(5) is a space that looks like a regular polyhedron
with 14-vertices, with pentagonal faces, i.e. 8 faces and 20 edges

Exercise 2.0.10. Though it satisfies Euler’s formula V — E + F = 2, such regular polyhedron
doesn’t exist.

3We will introduce the notation in the next section.
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Ficure 3. ‘K(4)

Reason 2.0.11. Observe that we have the following non-commutative square

((a1 - a2) - a3)(ag - a5) — (a1 (@2 - a3))(aq - @5)

T l

(((a1-a2) - a@3) - aq) a5 — ((a1- (@2 @3)) - a4) - a5
that is filled by a 2-homotopy which looks like

F1GURE 4. This is not K'(4)

and it is clearly not K(4). Rather K(5) is a space that looks like

Ficures. K(5)

This shows the complex combinatorics of K(#n) is general.

But what do we take away from these low dimensional cases? We observe in this section that
these spaces K (n) are sort of the abstraction of a family of composable loops in X, useful for the
“bookkeeping” and applications of such families. This motivates us to learn what an gperad is!
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3. NON-SYMMETRIC OPERAD
A non-symmetric topological operad O is a collection {O(n)};°_, of spaces, with O(0) a
singleton space, together with the following data:

(i) Continuous maps (abusing notation),
Y 1 O(k) X O(j1) X O(j2) X -+ X O(jk) = O(j1 + jo+ -+ jx)
such that if there are continuous maps

¥ : 0(j1) X O(i7) X O(i) X - -+ x O(i} ) = O(if +- -+ +i]

J1

¥ :0(j2) X O(i}) X O(i3) x -+ x O(i3,) = O} + -+ +17

J2

y 1 O(jr) X O(if) X O(i§) X --- X O(i§ ) = O +--- +if)

Jk

we have

YO (figu- 81y, ) = y(fien, -, er)
where
es =y(gsihy.- -+ h3)
(i) Anidentity element 1 € O(1) such that
y(l;d)=d

foralld € O(j) and

’)/(C;]wl"” ’1):C
[ —
k many

forall c € O(k).

Example 3.0.1. Let X be a compactly generated Hausdorft topological space. We define the
non-symmetric endomorphism operad Endx as follows. Let Endx (n) denote the space of based
continuous maps i : X< — X, with X*0 = x,and Endx (0) is the singleton space {i : * — X}.
The data is defined by
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(i) y(f;81.82, - .8k) = f(81 X g2 X -+ X gi) for f € Endx (k) and gx € Endx ().
(ii) The identity element 1 € Endx (1) is the identity map idy : X — X.

Example 3.0.2. We define the non-symmetric associative operad Ass as follows. Let Ass(n)
denote the singleton space {*} forall # > 0. The data is defined by

(1) 7(*7*7*7 7*) =k
(i) Theidentity element1 € Ass(1) is *.

Just as group theory without representations is rather sterile, so operads are best appreciated
by their representations, known as algebras, especially algebras with higher homotopies.

Definition 3.0.3. An action of an operad on a space X is a collection of maps ¢x : O (k) —
Endx (k) such that

(i) l,bl(].) ZidX X - X.

(ii) The following square

O(k) x O(j1) X O(j2) X - - - X O(jk) - > O(1+Jja+-+jk)
lkaij,'x"'Xl/’jk $j1+j2+-~+jk

Sl’ldx(k) X Sndx(jl) X Sl’ldx(jg) X X Sndx(]k) T> Sl’ldx(]l + ‘]'2 +--- 4+ ]k)
commutes.
Definition 3.0.4. A based space X is an O-algebra if O acts on X.

Example 3.0.5. We shall characterize the non-symmetric Ass-algebras. An action of Ass on a
space X picks out a n-ary operation for each n. Suppose 2 () = u : X*? — X, then consider
the commutative square

Ass(2) x Ass(1) x Ass(2) —r Ass(3)

Yo Xy X2 ¥s3
Endx(2) x Endx (1) x Endx(2) T} Endx(3)

which forces 3 () = u(1 X w). Similarly, the commutativity of the square
Ass(2) X Ass(2) x Ass(1) —r Ass(3)

Yo X2 Xy ¥s3

8”61’){(2) X Sndx(2) X Sndx(l) T> Sndx(?))
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forces Y3 (x) = pu(u X 1). Thus, u is associative on the nose. Next, consider the commutative
sqaure

Ass(2) x Ass(0) x Ass(1) —r Ass(1)
Y2 XXy Y1

Endx(2) x Endx (0) x Endx (1) ———— Endx(1)

which implies 1 = p(* X 1). Similarly, the commutativity of the square

Ass(2) x Ass(1) x Ass(0) —r Ass(1)
Y2 X1 X¥o Y1

Sndx(2) X Sndx(l) X Sndx(()) T} Sndx(l)

implies 1 = u(1 X ). Thus, u is unital. Therefore, X is an Ass-algebra iff X has an unital and
associative multiplication.

Observation 3.0.6. QX is not an Ass-algebra.

Then the natural question here is that, can QX be realized as an algebra of some operad O? It
seems that we have a guess of one such candidate.

Example 3.0.7. The spaces K(n) for n > 0 discussed in section 2, collectively forms an operad
known as the Stasheff associabedron operad K.
Fact 3.0.8. K(n) is a space which for all n > 2 looks like

(i) K(n) is homeomrphic to I"~2.

-1 1
n(n—1) —1facesand C,,_1 = — (2('1";11)) vertices.
n

(ii) K(n) is a regular polyhedron with
Proposition 3.0.9. The loop space QX is a K-space.

4. Ac-OPERAD
Oneimportant thing to notice is that K'(n) is contractible for all 7, and thus our next definition.

Definition 4.0.1. A non-symmetric operad O is an A-operad if O(n) is contractible for all
n>0.

Definition 4.0.2. A A.-space is a space together with an action of an A -operad.
Example 4.0.3. The Stasheff operad K is an A-operad since K'(n) is homeomorphic to |2
forall n > 2. Thus, a K-space is an A -space. It turns out that the converse is true as well.
Proposition 4.0.4. An As-space is a K-space.

Corollary 4.0.5. The loop space QX is an As-space.

Another thing to notice about QX is that by definition 7 (QX) =: w1 X, which is a group.
Thats motivates our next definition of a group-like space.

Definition 4.0.6. A space X is a group-like space if moX is a group.
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Now the question arises what are group-like Aco-spaces, other than the loop space X, but
the Recognition principle* due to May tells us that they are the only ones. In fancy terms, any
group-like space is weakly deloopable.

Theorem 4.0.7. Every group-like Aco-space is weak homotopy equivalent to QX for some space X.

5. HOMOTOPY COMMUTATIVITY

We again recall the standard multiplication of two loops @, 8 € QX,

A a(2s), 0<s
@ B=1 55— 1), Les

Observation s.o.1. The multiplication is neither commutative nor homotopy commutative, on
QX. This means that neither pt(—, —) and u(7(—, —)) are equal nor are they path-connected
in Endx(2). This amounts to say that we have a map KE(2) — Endx(2), where K*(2) isa
doubleton space. Apriori, it is not clear why this map picks up u(—, =) and u(7(-, -)).

—_ N

<
<

Definition 5.0.2. A symmetric topological operad O is a collection {O(n) };-_; of spaces, with
0(0) asingleton space, together with the following data:

(i) The data of a non-symmetric operad.

(ii) A right free action of Sy on O(k) such that the following diagram

1xp

O(k) X O(j1) X -+ x O(jx) > O(n) XO(jo-1(1)) X=X O(jo1(k))

| 1

O(k) X O(j1) X -+~ x O(jx) O(j1+---+jK)

N Tj1, ik

O@1+---+ )

commutes.

Example s.0.3. The symmetric endomorphism operad Snd)z( where the data is same as the
non-symmetric version along with the Sx action on Snd)zf(k) given by (fo)(x1, -+ ,xk) =
f(x[,71(1>, s ,Xo.—l(k)) fOI‘f € (Snd?((k), o € S.

Definition s5.0.4. An action of an operad on a space X is a collection of Si -equivariant maps

Ui : O(k) = Endx (k) such that
(i) 1,01(1) = idX X - X.

(ii) The following square

O(k) x O(j1) x O(j2) X - -+ x O(j) r S O(j1+ja+-+Jjx)

Yie X XX Wiy g+ +ik

(gl’ldx(k) X Sndx(Jl) X (gl’ldX(JQ) XX 8nd)((Jk) f} Sndx(Jl +j2 + - +jk)

commutes.

4This is the base case of the Recognition principle
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Example s5.0.5. We define the commutative operad Comm similar to the associative operad Ass
as follows. Let Comm (n) denote the singleton space {#} forall n > 0. The data of the operad is
same as that of Ass, together with the trivial action of Sy on Comm (k). The equivariance and
the structure maps characterizes the Comim-algebras, which are precisely spaces X having unital,
associative and commutative multiplication.

6. LITTLE n-CUBES OPERAD

We will deal with 7 = 1 case for this talk. The goal of this section is to understand how little
cube operad E acts on spaces.

Definition 6.0.1. The little cube operad E; is defined as follows. A pointin E1 (k) is a map
falm---al -1

———
k many

that specifies k disjoint little cubes in | i.e. f can be thought of as a k-tuple ( f1, f2, - , fx) of

mutually disjoint little cubes inside I, fi : | — | being a nice map.

Proposition 6.0.2. E1 isa weak symmetric Ac-operad i.e. an E1-operad is weakly equivalent to
an As-operad.

Corollary 6.0.3. An E1-space is weak bomotopy equivalent to an A-space.
Next, we show that E acts on QX.
Proposition 6.0.4. QX isan Eq-space.

Proof. The loop space QX can be viewed as the space of maps (I, d1) — (X, *) in the category
of pairs of spaces. For a k-tuple (fi, f2,- - , fx) of mutually disjoint little cubes and k-many
loops (a1, @2, -+ ,ax) € (QX)k, a = (1,01) = (X, *). Then we obtain another loop
-1 .
Bism {w(fk (6) s i)
%

otherwise

This is the ordinary concatenation of loops in order, in disguise. The figure below makes it clear.

O

Theorem 6.0.5. Every group-like E1-space is weak homotopy equivalent to QX for some space X.
This can be generalized to n-fold loop spaces Q" X.

Theorem 6.0.6. Every group-like E,-space is weak homotopy equivalent to Q" X for some space X.
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